Map, Filter, and Reduce are key paradigms in functional programming. They enable the creation of concise and efficient code, reducing the need for explicit loops and branching. 1 . MAP : Map applies a function to all items in an input list . # Example: Converting temperatures from Celsius to Fahrenheit celsius = [ 0 , 10 , 20 , 30 , 40 ] fahrenheit = list ( map ( lambda c : ( c * 9 / 5 ) + 32 , celsius )) print ( fahrenheit ) # Output: [32.0, 50.0, 68.0, 86.0, 104.0] In data science, you might use map to apply a transformation to each element in a dataset. 2 . FILTER : Filter creates a list of elements for which a function returns true. # Example: Filtering out even numbers numbers = [ 1 , 2 , 3 , 4 ,...